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ABSTRACT

Methods for classifying remotely sensed data from multiple data sources

are considered. Special interest is in general methods for multisource

classification and three such approaches are considered: Dempster-Shafer

theory, fuzzy set theory and statistical multisource analysis. Statistical mul-

tisource analysis is investigated further. To apply this method successfully

it is necessary to characterize the "reliability" of each data source. Separa-

bility measures and classification accuracy are used to measure the reliabil-

ity. These reliability measures are then associated with reliability factors

included in the statistical multisource analysis. Experimental results are

given for the application of statistical multisource analysis to multispectral

scanner data where different segments of the electromagnetic spectrum are

treated as "different" sources. Finally, a discussion is included concerning

future directions for investigating reliability measures.



CHAPTER 1

INTRODUCTION

Computerized information extraction from remotely sensed imagery has

been applied successfully over the last two decades. The data used in the

processing has mostly been multispectral data and the statistical

pattern recognition (multivariate classification) methods are now

widely known. Within the last decade advances in space and computer

technologies have made it possible to amass large amounts of data about

the Earth and its environment. The data are now more and more

typically not only spectral data but include, for example, forest maps,

ground cover maps, radar data and topographic information such as

elevation and slope data. We may therefore have many kinds of data from

different sources regarding the same scene. These are called multisource

data.

We are interested in using all these data to extract more information

and get more accuracy in classification. However the conventional

multivariate classification methods cannot be used satisfactorily in

processing multisource data. This is due to several reasons. One is that the

multisource data need not be just spectral; they can for example be

elevation ranges or even non-numerical data such as ground cover classes or



soil types. The data are also not necessarilyin common units and therefore

scaling problems may arise. It is also desirable to determine the reliability of

each source,becauseall the sources are in general not equally reliable. This

all implies that other methods than the conventional multivariate

classification have to be used to classify multisource data.

Various ad hoc methods have been proposed to classify

multisource data. However, we are interested in developing more general

methods which can be applied to classify any type of data. In particular,

our attention is focused on statistical multisource analysis by means of a

method based on Bayesian classification theory which was proposed recently

by Swain, Richards and Lee Ill. An extension of this method will be

developed in this report.

Our objective is to modify the method to take into account the relative

reliabilities of the sources of data involved in the classification. This requires

a way to quantify the reliability of a data source. Its importance becomes

apparent when we look at the combination of information. The foundation

of the method for combination from various sources consists essentially of

multiplication of source-specific posterior probabilities from all the sources

involved in the classification. If any of the sources are unreliable they can

affect the outcome of the multiplication disproportionately and consequently

increase classification error.

The goal of this report is to investigate methods to determine the

reliability and define a corresponding reliability factor for each data source.

The reliability factors are then included in the classification process.

Experimental results will be given.



CHAPTER 2

PREVIOUS WORK

2.1 A Few Early Methods

Several methods have been used in the past to classify

multisource data. One method is the "ambiguity reduction" where the data

are classified based on one or more of the data sources, the results from the

classification are assessed, and other sources are then resorted to in order to

resolve the remaining ambiguities. The ambiguity reduction can be achieved

by logical sorting methods. Hutchinson has used this method successfully

[2].

A second method is supervised relaxation labeling derived by Richards

et al. [3] in order to merge data from multiple sources. This method, like

other relaxation methods, tries to develop consistency among a collection of

observations by means of an iterative numerical "diffusion" process. So far

this method has not been fully investigated on multiple sources and its

iterative nature makes it computationally very expensive.

A third method is to subdivide the data based on a subset of the data

sources and then analyze each subdivision based on the remaining sources.

In this method the data are subdivided in such a way that variation within
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each subdivision is minimized or eliminated, due to some of the subdividing

variables. An example of this method can be found in Strahler et al. [4].

None of the methods described above is a general approach in

multisource classification and all of them depend heavily on the user. They

all deal with the various sources of data independently. In contrast the

fourth method mentioned here is a general approach which does not deal

with the data sources independently. This method is the stacked-vector

approach, i.e., formation of an extendedvector with components from all of

the data sources and handling the compound vector in the same manner as

data from a single source. This method is the most straightforward and the

simplest of the methods. It works very well if the data sources are similar

and the relations between the variables are easily modeled [5]. However, the

method is not applicable when the various sourcescannot be described by a

common model, e.g., the multivariate Gaussianmodel. Another drawback is

that when the multivariate Gaussian model is used, the computational cost

grows as the square of the number of dimensions. This makes the

computational cost severeif the number of sourcesis large.

All the methods discussedup to this point have significant limitations

as general approachesfor multisource classification. Our goal is to develop a

general method which can be used to classify complex data sets,

containing both multispectral, topographic and other forms of geographic

data. Three such methods are discussedbelow. First we discuss statistical

multisource analysis, a probabilistic method which is based on Bayesian

decision theory and was developed recently by Swain, Richards and Lee [1].

Then we address two non-probabilistic approaches for combining sources,



methods based on Dempster-Shafer theory and fuzzy set theory. We will

review the main concepts of these three approaches and then pursue the one

we think is most applicable in multisource classification of remotely sensed

data.

2.9. Statistical Multlsource Analysis

As noted previously, this method was proposed recently by Swain,

Richards and Lee [1]. It is a general method which extends well-known

concepts used for classification of multispectral images when only one data

source is involved. In this method the various data sources are handled

independently and each data source can be modeled by any appropriate

model. The main concepts in the theory are addressed below.

Assume there are n separate data sources, each providing a

measurement x s (s _ 1, . . . ,n) for each of the pixels of interest. If any

of the sources is multidimensional, the corresponding x s will be a

measurement vector. Let there be M user-specified information classes in

the scene (not necessarily a property of the data) denoted wj (j :

1, . . . ,M). The pixels are to be classified into these classes.

Each data source is at first considered separately. For a given source,

an appropriate training procedure can be used to segment or classify the

data into a set of classes that will characterize that source. We could for

example use clustering for this purpose. The data types are assumed to be

very general, e.g., both topographic and multispectral data. We

therefore refer to the source-specific classes or clusters as data classes,

since they are defined from relationships in a particular data space.
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The data classes are for instance spectral classes in the case of

spectral data while for topographic data they may for example be

elevation ranges. In general there may not be a simple one-to-one

relation between the user-desired information classes and the set of

data classes available. It is one of the requirements of a multisource

analytical procedure to devise a method by which inferences about

information classes can be drawn from the collection of data classes.

The i-th data class from the s-th source is denoted by dsi (i _ 1,2, . . . ,

ms) , where ms is the number of data classes for source s. The

measurement vectors are associated with data classes according to a set of

data-specific membership functions, f(dsi_s ). This means that for a given

measurement from the s-th source, f(dsi_s) gives the strength of association

of x s with data class dsi defined for that source.

The information classes wj are related to the data classes from a single

source by means of a set of source-specific membership functions f(wjldsi(Xs)),

for all i, j, s, where f(wjldsi(xs)) is the strength of association of data class

dsi with information class wj, possibly influenced by the value of x s. This

expression is different from previous approaches for single source

classification, where it is often assumed in the analysis that there is a

unique correspondence between spectral and information classes, once

prior probabilities have been determined.

Now a set of global membership functions is defined, that collect

together the inferences concerning a single information class from all of

the data sources (as represented by their data classes). The membership

function Fj for class wj is of the general form:



Fj = Fj[f(wjld i(x )),rs] (i=1,2,... ,ms s=l,2,... ,n) (2.1)

where r s is the quality or reliability factor of the s-th source and is defined

to weight the various sources, reflecting the perceived or measured

reliabilities of the various sources of data. This is very important

because it may be known that all the sources are not equally reliable and

therefore the analyst is allowed to take into account his confidence in the

recommendation of each of the individual sources of data available.

Finally a pixel X = [xi,... ,xn] T is classified according to the usual

maximum selection rule, i.e., it is decided tlaat X is in class w* for which

F* = max Fj (2.2)
J

Now the membership functions are defined specifically. From experience

with Bayesian classification theory a natural choice for the global

membership function is the joint-source posterior probabilities.

Fj(X) = p(wj[X) -----p(wj_x,,x2,... ,Xn) (2.3)

If we make the assumption that the data sources are statistically

independent, the global membership function may be written [1]:

n

Fj(X) ----[p(wj)]l-nl]P(Wj_s) (2.4)
s=l

It may be argued that independence between two unrelated sources is

unlikely and the independence assumption may therefore introduce errors.

On the other hand there are mainly two reasons why use of the

independence assumption is desirable in this case. First, it is clear that

interactions between two data sources can be very complex and consequently



hard to model. To make use of dependence between sources these

interactions have to be modeled, but we are either unable or unwilling to do

that. Secondly, taking dependence into account will increase the

computational complexity of the classification procedure and may impose

considerable burden on the computer resources available. Using this

reasoning, independence between data sources is justified in the global

membership function.

Now consider the individual source-specific membership functions

which appear here explicitly as source-specific posterior probabilities.

Thesecan be expressedas:

rn s

p(wj_xs) = Ep(wjldsi,Xs)p(dsiks) (2.5)
i=l

where the source-specific membership functions appear explicitly as

p(wjldsi,Xs) and the data-specific membership functions as p(dsi_Xs).

Another way to write (2.5) is:

ms

p(wj_Xs) = Ep(xs[wjdsi)p(d_ilwj)p(wj)/p(xs) (2.6)
i=1

Implementation of the classification technique involves using (2.5) or (2.6)

to determine the posterior probabilities in (2.4) and then (2.2) is used for

the decision. In turn the quantities in (2.5) or (2.6) as appropriate have

to be estimated. It is now interesting to look at equations (2.5) and (2.4)

taken together. In (2.5) we are just looking at one source at a time. There

we see explicitly the relation between the data vectors and the data classes

and the information classes, demonstrating the role of data classes as

intermediaries. Equation (2.4) then aggregates the information from all the



sourcesof data for each specific information class.

As seen above, statistical multisource analysis is an extension of one

source Bayesian classification. We now turn away from the Bayesian

framework and look at combination of sourcesusing Dempster-Shafer theory

and fuzzy set theory.

2.3 Dempster-Shafer Theory

Several approaches for dealing with the problem of quantifying

uncertainty have been proposed in the literature. One approach comes

from the works of Dempster and Sharer in connection with a mathematical

theory of evidence. The theory as described in Shafer I6] is a departure

from the traditional Bayesian approach in that mass is assigned to some

subsets, whereas uncertainty is spread over all subsets.

In this respect the traditional Bayes approach has been rejected by

many authors because [7,8]:

1) Knowledge is conditional on the past and this requires large

amounts of statistical data.

2) It is difficult to ensure and maintain consistency in a collection of

interrelated propositions. This also stems from the need to assign

point probability values even when the underlying models from

which these values are derived are incapable of supplying such

precise data.
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Uncertainty about a proposition implies near certainty about the

negation of that proposition, i.e., Bayesian theory cannot

distinguish between the lack of belief and disbelief.

2.3.1 Fundamentals in Dempster-Shafer Theory

The idea is to use a number between zero and one to indicate the

degree of support a body of evidence provides for a proposition. The

fundamental concept in Dempster-Shafer theory is the basic probability

assignment m. For a set A, m(A) measures the belief that is committed

exactly to A alone. It can be defined in the following way:

Definition: Assume m is a set mapping from subsets of the finite set X

into the unit interval, i.e.,

m: 2x _ [0,1]

such that:

1)

2)

re(C) = 0 (where ¢ is empty)

E m(A)= 1
ACX

m is then called a basic probability assignment. It is worthwhile to note

that:



1)

2)

3)
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m(X) is not necessarily one.

A C S does not necessarily imply m(A) __ m(S)

It is allowed that belief not be committed to either A or A c.

This quantity m(A) measures the belief that one commits exactly to A, not

the total belief that one commits to A. To obtain the measure of the total

belief committed to A, one must add to m(A) the quantities m(B) for all

proper subsets B of A. Then a belief function can be defined in the following

way:

Definition:

function:

Given a basic probability assignment m,

Bel: 2 x --* [0,1]

such that for any A _C X:

Bel(A) -- _ m(B)
BCA

The evidence for a

[s(A),p(A)] of the unit interval [0,1], where

s(A) = Bel(A)

p(A) = 1--s(A ¢)

The lower value, s(A), represents

and sets a minimum value for its

denotes

define the belief

(2.7)

proposition A is described by a subinterval

(2.8)

(2.9)

the "support" for the proposition

likelihood. The upper value, p(A),

the "plausibility" of that proposition and establishes a maximum
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likelihood. Support may be interpreted as the total positive effect that a

body of evidence has on a proposition, while plausibility represents the

total extent to which a body of evidence fails to refute a proposition.

The degree of uncertainty about the actual probability value for a

proposition corresponds to the width of its evidential interval; i.e., p(A) -

s(A). If this difference is zero for all propositions, the system is

Bayesian [8].

For example if we represent a proposition A using the notation

A[s(A),p(A)], then [8]:

A[o,I]

A[o,o]

A[1,1]

A[.2o,I]

A[o,.so]

A[.2o,.sol

There is no knowledge at all about A.

A is false.

A is true.

Evidence provides partial support for A.

Evidence provides partial support for A c.

Probability of A is between .20 and .80. Evidence provides

simultaneously support for both A and A c.

An important part of Shafer's theory involves the combination of belief

functions to form a composite belief function, i.e., combining various

sources of evidence. Sharer accomplishes this by use of Dempster's rule

of combination, sometimes called Dempster's orthogonal sum. This gives

the aggregated mass that can be assigned to the labeling proposition X.
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mx(A)m2(B)

re(x)= Ana=x
I-- _ m,(A)m2(B)

AnB-_

We may callBell_Bel 2 the orthogonal sum of Bel I and Bel 2.

the cornmutativity and associativityof the belieffunctions:

Bell@Bel 2 = Bel2@Bel I

(Bell@Belz)@Belz = Bell@(Bel2(_3el3)

(2.10)

Because of

(2.11a)

(2.11b)

time towe form pairwise sums and combine two functions at a

accomplish the combination.

To illustrate use of Dempster-Shafer theory further we give a simple

example using two sources of evidence. In this example the sets A and A c

are subsets of the set O which is usually referred to as the "frame of

. t)discernment.

For source # 1 we have:

A = {a} A c ={b,c} O = {a,b,c}

We assign the basic probability assignments in the following way:

m(A) = 0.6 m(A c) = 0.3 m((-)) = 0.1

Then we can calculate the support and plausibility for each set by using

equations (2.8) and (2.9). This calculation gives:

s(A) = 0.6 s(A c) ----0.3 s(O) = 0.6 + 0.3 + 0.1 = 1

p(A) = 1 -0.3 =0.7 p(A c) = 1 -0.6 =0.4 p(O) = 1 -0 = 1



We can therefore write:

14

A[.8,.7] AC[.3,.4] 0[1,1]

Now for source _ 2 we have the same sets:

A= {a} AC= {b,c} O = {a,b,c)

However, the basic probability assignments are different:

mCA) : 0.3 mCA ¢) ---- 0.7 m(O) = 0.0

Using these data we now get:

" s(A) = 0.3 s(A ¢) = 0.7 s(e) = 0.3 + 0.7 = 1

PCA) = 1 - 0.7 = 0.3 p(A c) = 1 -- 0.7 ----0.3 p((_) ----1

We can now write:

A[.3,.3] AC[.7,.7] O[1,1]

To calculate the aggregated mass from these two sources we can now use

Dempster's rule (equation (2.10)). That calculation gives:

0.6-0.3 + 0.3-0.1
m(A)---- =0.43

1 -- (0.6"0.7 -4- 0.3"0.3)

0.3"0.7 + 0.7"0.1
m(A ¢) = = 0.57

1 -- (0.6"0.7 -4- 0.3"0.3)

2.3.2 Decision Rules

In statistical pattern recognition methods

straightforward way to select a decision rule to

preferred label among a range of options. For

there is usually a

use in deciding the

maximum likelihood
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algorithms the rule is usually expressed in terms of the most favored

label. This is also the case for the multisource statistical technique

described above in which class membership is decided on the basis of

maximizing the global membership function.

This is not the case, though, with evidential methods, where an

evidential interval bounded by support and plausibility rather than a

single value is attached to candidate class labels. In that case one has

a number of options potentially to chooseamong for a decision rule [9].

Someof the candidates are:

1) A maximum support rule, where the labeling proposition with the

highest support is chosen.

2) A maximum plausibility rule, where the proposition with the

highest plausibility is chosen.

3) An absolute rule, where the proposition whose support exceedsall

other plausibilities is chosen. If the width of the evidential interval

is larger than the difference between the two highest supports,

this rule will not give a decision.

A maximum support and plausibility rule, where the label chosen

has both the highest support and plausibility.

4)

2.3.4 Example of Multisource Classification Using Dempster-

Sharer Theory

Kim et al. [10] have applied Dempster-Shafer theory to multisource

data. They use a distance measure as the weight of evidence for data
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classification to determine the degrees of support based on the multispectral,

digital elevation and digital slope data. In their work the Mahalanobis

distance is used to take into account correlation and dispersion of samples.

They define the measure of support for a certain class _ as:

Bi(z' ) = 1 - Pi(Z<z') -- 1 - Fz(z' )
(2.12)

givenwhere z' denotes the distance from the mean vector of _q to a

observation vector X. Pi (Z __ z') is the probability of the event (Z _ z') for

samples in _ and Fz(z' ) is the cumulative distribution function of Z.

It is easy to see that the function Bi( ) has the properties:

1) Bi: [O,(x_] "-"* [0,1]

2) B i is nonincreasing.

3) Bi(0 ) = 1 and Bi(c<) ) _--- 0

Properties (2) and (3) correspond to the human intuition that the

disbelief in the hypothesis X belonging to class _ increases as the distance

between the mean and X increases. Thus 1-Fz(z') may be considered as the

measure of support for the hypothesis.

Kim et al. use B i to find the support for the proposition that pixel X in

source s belongs to class _. They calculate this for each source and then use

Dempster's rule to combine the evidence from all the sources, so the pixel

can be classified using any appropriate decision rule.
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2.4 Fuzzy Reasoning

Aside from Dempster-Shafer theory another way to deal with

uncertainty is to apply the notion of fuzzy or monotonic measures which

initially comes from the work of Zadeh [11]. In fuzzy theory a fuzzy set is

a class of objects with a continuum of grades of membership. Such a set is

characterized by a membership function which assigns to each object a

grade of membership ranging between zero and one. Therefore for a fuzzy

subset A of the universe set A0, with membership function/zA(x ), we have:

Z A(ai) <_ 1 for all ai (2.13)
A

This is very different from conventional ("crisp") set theory where we have

an "on/off' membership function that takes only values 0 or 1 , i.e., we place

our full confidence in an element being a member of particular set or not

[12]. To illustrate this concept further, we know for conventional sets that

the Bayesian probability of the subset A is:

P(A) = _ p(ai) (2.14a)
a_EA

On the other hand in fuzzy set theory the corresponding probability is:

P(A) = _ ttA(ai)P(ai) (2.14b)
aiEA

where p( ) is the probability density and PA( ) is the membership function.

In combining evidence from multiple sources, fuzzy theory has been

used in combination with Dempster-Shafer theory. Ishizuka [13] and

Ishizuka et al. ]14] have extended Dempster-Shafer theory to include fuzzy

sets. They define the degree that a fuzzy subset A 1 is included in another
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fuzzy subsetA2 of the same universe set A0 as:

min(1,1 -- #a,(a) + pa2(a))
I(AI_C_A2)= ,

max(_tA,(a))
a

(2.15)

where PAl and #A2 are the membership functions of A 1 and A 2 respectively.

The denominator is called the height of the fuzzy subset and equation (2.15)

takes the value 1 if A 1 is completely included in A 2 and 0 if /_A2( ) = 0 at

the point where #A,( ) takes its peak value.

They also define the degree of intersection of two fuzzy subsets A 1 and

A 2 as:

max(_tA,glA.2(a))
a

J(A1,A2) = min(max(/zA,(a)),max(pA2(a)) (2.16)
R R

where the membership function of the intersection A1NA 2 is defined in fuzzy

set theory as:

#h,aA2(a) = min(#h,(a),Ph2(a))

The denominator of (2.16) is 1 if

normalized, i.e., iff for all a C A:

(2.17)

the fuzzy subsets A 1 and A 2 are

..,(a) = ..2(a)= 1

The degree that the intersection of A 1 and A 2 is ¢ (empty) is defined as:

i -- J(A,,A2)

If now an extended Dempster-Shafer probability assignment re(A) is

defined for each fuzzy subset A characterized by pA(a) then equations (2.15)

and (2.16) can be used to define a belief function and a combination rule
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which are direct extensions of the ones in Dempster-Shafer theory. The

belief function is then:

Bel(Ai) = _I(AjC-Ai)m(Aj) (2.18)

Aj

The combination rule is an extension of Dempster's rule:

J(Ali,A2j)ml (Ali)m2(A2j)

AliFLk_=Ak (2.19)
m(Ak) = _ (1 -- J(Ali,A2j))ml(Ali)m2(A2j)

AIi,A_

This extension of Dempster-Shafer theory makes it possible to use the

decision rules described in 2.3.2.

Several other methods of combining fuzzy sets have been addressed in

the literature. Two of them are listed below but will not be discussed any

further here.

1)

2)

Taking minimum and maximum of the membership functions [15].

Using linguistic probability [16].

2.5 Comparison of Multisource Classification Methods for Use in

Processing of Remotely Sensed Data

We have now described methods used for classification of multisource

data. As said earlier, we are only interested in general methods, not in ad

hoc methods. There were three general approaches discussed in this

chapter.
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Dempster-Shafer theory deals with uncertainty in the data

measurements and is widely recognized and studied. It has been examined

in expert systems [17] and is now being used in geographic information

processing [18]. This approach has some problems, which include how to

give values to the basic probability assignment and what decision rule to

choose. These problems are highly application-specific in nature.

Fuzzy set theory deals with uncertainty, but in a different way, and has

not been used extensively in classification of remotely sensed data. Some

authors have examined clustering with fuzzy techniques I19,20] and other

have addressed combination of evidence using fuzzy sets as described in

section 2.4. The problems with this approach are similar to the ones using

Dempster-Shafer theory. Here we have to specify a membership function for

each set and it is not evident what is the best way to do that.

It is interesting to note here that although Dempster-Shafer theory and

fuzzy set theory have more mechanism to handle uncertainty than Bayesian

decision theory does, Bayesian statisticians do not think very highly of these

theories. Berger for example views them either as unnecessary elaborations

on robust probabilistic analysis or as insufficiently complicated

representations of reality I21]. On the other hand we do have much more

experience with Bayesian classification theory when processing remotely

sensed data. Statistical methods such as the maximum likelihood method

have been used for a long time in conventional one-source classification.

The statistical multisource method by Swain, Richards and Lee is an

extension of such methods. It is therefore a reasonable choice in our

analysis. This method also does not have any of the problems associated
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with the two approaches above. However, the method as presented by

Swain, Richards and Lee does not provide a mechanism to account for

varying degrees of reliability of different sources as do Dempster-Shafer

theory or fuzzy set theory. It is our belief that this problem can be

overcome if we assign reliability factors to each source involved in the

classification. For these reasons we will investigate a modified version of the

statistical multisource analysis by Swain, Richards and Lee by means of

which reliability analysis is added to the classification process.
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CHAPTER 3

THE APPROACH

3.1 General Concepts

From the Swain, Richards and Lee approach we have the global

membership function [1]:

n

Fj(X) = [p(wj)]l-nl]p(wj[xi)
iffil

= [p(wj)]l-np(wj]xl)p(wj]x2)... PCwj]Xn) (3.1)

We want to associate reliability factors with the sources as discussed in

chapter 2, i.e., to express quantitatively our confidence in each source,

and use them for classification purposes. This is very important because we

need to increase the influence of the "more reliable" sources, i.e., the sources

we have more confidence in, on the global membership function and

consequently decrease the influence of the "less reliable" sources in order to

improve the classification accuracy. The need for reliability factors becomes

apparent if we look at equation (3.1) where the global membership function

is a product of posterior probabilities related to each source. Each

probability has value in the interval from 0 to 1. If any one of them is near

zero it will carry the value of the membership function close to zero and

therefore downgrade drastically the contribution of information from other
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sources, although the particular source involved may have little or no

reliability.

From above it is clear that we have to put weights (reliability factors)

on the sources which will influence their contributions to classification.

Since we have a product of posterior probabilities this weight has to be

involved in such a way that when the reliability of a source is low it must

discount the influence of that source and when the reliability of a source is

high it must give the source relatively high influence. One possible choice

for this kind of analysis is to put reliability factors as exponents on the

posterior probabilities of each source. Then equation (3.1) would be

written in the following form:

fj(X) =

II

= ii p( j ]xi)a, (3.2)
i=l

Equation (3.2) can also be written in a logarithmic form as:

n

log Fj(X) = (1 --n)log p(wj) + _ailog P(Wj_xi)
i=I

(3.2a)

where the reliability factors are expressed as the coefficients in the sum.

These coefficients act like weights in the sum and control the influence of a

source on the global membership function. If a coefficient is high compared

to the other coefficients, the source it represents will have greater influence

on the global membership function. If on the other hand a coefficient is low

compared to other coefficients, it will decrease the influence of its source.

Another way to see this is to look at the sensitivity of the global
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membership function to changes in one of the posterior probabilities which

can be expressed as [9]:

0"Fj(X) _p(coj _xi)

Fj(X) -- ai p(wj _i)

We select the ai's (i : 1,... ,n)in the interval [0,1] because of the

following reasons. If source i has no reliability (ai---_0) it will not have any

influence on (3.2) because p(wj_xi) ° : 1, and if source i has the highest

reliability then it will give a full contribution to (3.2) because p(wj_xi): z

p(wj_zi). It is also worthwhile to note that this method of putting exponents

on the posterior probabilities does not change the decision for a single-source

classification because the exponential function p_ is a monotonic function of

p.

To illustrate the last point, consider a simple example. In this example

assume that we have one source, that a is a number in the interval (0,1],

and that we have just two information classes 031 and co2. We are observing

one ground element x and the global membership functions F 1 and F 2 are of

the form in (3.1):

F1(x) = P(Wl _)

F2(x) = P(w2_x)

Assume now that p(wl_X ) > p(w2_x ).

decide x belongs to w r Now applying the exponent method

global membership functions will be of the form in equation (3.2):

(3.3a)

(3.3b)

Using the maximum selection rule we

above, the
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FI'CX) = PCwl_)a (3.4a)

F2,(x) = p(w2_)a (3.4b)

Keeping in mind that p(w1_) and p(w2_) are numbers in the interval [0,1], a

is a number in the interval (0,1] and p(wl_ ) > p(w2_x)we get:

• >

Therefore the decision is the same for this particular x, i.e., we classify x to

w 1. This of course applies for all ground-elements x while a G (0,1]. If a =

0 we get no decision, but in case we are considering multisource data this

source will have no influence on (3.2) and the decision will depend on the

other sources. When we combine two or more sources, the global

membership function becomes more complex to analyze because it consists of

a product of posterior probabilities with different reliability factors and this

product is normalized by the priori probabilities.

The problem is to determine the ai's based on the reliability of the

sources. We think a of source as being reliable if its contribution to the

combination of information from various sources is "good", i.e., if we increase

the classification accuracy substantially or extract more information by

using this particular source. Using this understanding of a reliable source

we apply two measures to determine the reliability of a source: weighted

average separability and overall classification accuracy.

It is our belief that we can call a source reliable if the separability of

the information classes is high for the source. If on the other hand the

separability of the information classes is low, we can assume that the source
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is not very reliable. Therefore one possibility for reliability evaluation is to

use the average separability of the information classes in each source, e.g.,

average Jetfries-Matusita (JM) distance, average transformed divergence or

any other separability function. What kind of average is used depends on

what we are after in the multlsource classification. For instance if we are

trying to improve the overall classification accuracy we use the weighted

overall average. If, however, we are concentrating just on specific classes,

the weighted average separability of those information classes is used.

Another way to measure reliability of a data source is to use the

classification accuracy of the source. In this case we call a source reliable if

the classification accuracy for the source is high, but if the accuracy is low

we call the source unreliable. This approach is related to the method of

using separability measures in that increased separability gives higher

accuracy.

As said earlier we want the reliability factors to have values in the

interval [0,1]. We also want to associate the reliability factors to values of

some separability measure or to the classification accuracy. If we choose to

use the values of the separability measures to determine reliability factors,

we know that some separability functions have saturating behavior as

functions of normed distance, e.g., the transformed divergence and JM-

distance. We know beforehand that they take values in some interval

[min,max] and we simply have to norm them by division and/or subtraction.

Thus for separability function f(x) we calculate:
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f(x -- min)
a-_

max -- min

so a takes value in [0,1]. Some separability estimates, e.g., the divergence,

do not have this saturating behavior and increase with increased normed

distance. In that case we have to specify a cutoff point somewhere on the

curve as our maximum value to saturate the function. This means that

every value higher than this cutoff will be mapped to the cutoff value. This

saturation is done to limit the influence or dominance of "very separable"

classes on the weighted average of the separability. We choose a specific

cutoff value which reflects our belief that the information classes which have

separability higher than this value are "separable enough." We then use this

,t ,tsaturated curve in the same manner as described above.

It remains to be shown whether the simple mapping described above is

sufficient to produce appropriate values for the reliability factor. That will

be discussed further in section 3.3. We shall now look more closely at

separability estimation.
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3.2 Separability Estimates

In this research we look at two separability estimates, the JM-distance

and the transformed divergence.

3.2.1 Jeffries-Matunita Distance

The JM distance between two classes _ and wj is defined formally as:

It is roughly speaking a measure of the average difference between the two

class density functions [22,23].

In classification of remotely sensed data we assume most often that the

classes have normal density functions, i.e.,

p(Xl_ ) = N(Ui,Ei)

p(Xl%) -- N(Uj,Ej)

With this assumption (3.6) reduces to:

Jij = [ 2 ( 1 -e -b_j )]1/_ (3.7)

where bij is the Bhattacharyya distance:

1_ E_+rj 1bij = (Ui-uj)T( 2 ) (Wi-Uj)

2_+!;j
--T-I1

+  loge[ ]
12i 11/212j11/2z

(3.8)

And the average class separability is:
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1 MM
-- E _-] P(wj)P(U_) JiJ

Jave 1 -- tg i-l j-1

(3.9)

where:

The

Therefore we can normalize Jave

M (3.10)= Ep( )
i-1

J_ve has the saturating behavior and has a maximum value of _/2.

to lie in the interval [0,1] by division by

3.2.2 The Transformed Divergence

The divergence of two classes _ and wj isdefined formally as:

Dij = E[Lij(X)I_ ] + E[Lji(X)Iwj]

where Lij iX) is the logarithmic-likelihood ratio:

Lij(X ) = logep(Xl_ ) --logep(X[wj)

If we assume as before that the classdensity is normal, Dij reduces to:

(3.11)

(3.12)

1 tr[(_i_ _-]_j)(_j-1 __ _i-1)] +
Dij -- 2

Dij

1 tr[(_i-1 q_ _j-1)(Ui _ Uj)(Ui_ uj)T] (3.13)
2

is not bounded as a function of normalized distance, i.e., it is

monotonically increasing with increasing distance. To use the divergence we

could specify some cutoff value and apply the approach described in section
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3.1. However a saturating function of divergence, called

divergence, can also be used. This function is defined as:

DTij = 2[ 1 -- exp( Dijs )]

The average separability using DTij is:

D w 1 M M (wj)DWij
-- _ _P(_)Pave 1 -- _ jiz "z

where t_ is:

M

transformed

(3.14)

(3.15)

t¢ = _-_p(_)2 (3.16)
i=l

DTave has 2.0 as its maximum value. We can therefore normalize DTave

by 2.0 for use in our global membership function (3.2).

3.3 The Method

In the statistical multisource analysis, each source is first classified

separately. When the reliability factor evaluation is added we use

the classification accuracy or calculate the average separability for each

source by any appropriate separability estimate. One tiling which is

important here is that we are discounting the sources by putting reliability

factors on each source-specific posterior probability p in the global

membership function. If we look at the family of curves pa as a function of

a, where a has value in [0,1] as shown in Fig. 3.1, we see that the functions

are more discriminable as a increases. This leads us to the point that the

separability estimates and the classification accuracy should only be used to
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measure reliability. The source that has the "highest reliability" should be

given the highest reliability factor and the others should be given reliability

factors relative to this value. One way to accomplish this is to scale the

values of the reliability measure as described below.

Assume we have n sources and we have calculated the reliability for

each source i by somemeasure and its value is Ri. We give the source with

the highest reliability the highest reliability factor amax. If the smallest

possible reliability measure is min we can calculate the reliability factors for

the sourcesaccording to:

min (3.17)
ai = max{Rj -- rain} amax

j=l,n

These values are then used as reliability factors in the global membership

function (3.2). From there on we continue as described in section 2.2.
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CHAPTER 4

EXPERIMENTAL RESULTS

4.1 General Remarks

Our objective is to apply the statistical multisource analysis with

varying levels of "reliability." To explore the method we would prefer a data

set which contained several geometrically registered sources of data, e.g.,

Landsat Multispectral Scanner or Thematic Mapper data, aircraft

multispectral scanner data, radar data, digital topographic data and a

digital reference map for the particular area involved. Unfortunately we

have not had a suitable data set of this kind available. Therefore to get

preliminary results, the algorithm was applied to 12 channel aircraft

multispectral scanner data, treating different regions of the electromagnetic

spectrum (visible, near IR, ...) as different "sources." The data set chosen for

experiment is a portion of flight line 210 from the 1971 Corn Blight Watch

Experiment conducted by the Laboratory for Applications of Remote Sensing

(LARS) at Purdue University, NASA and the U.S. Department of

Agriculture. The portion of the data set used is 140 x 220 pixels and covers

an agricultural area in Tippecanoe County, Indiana. A reference

photograph and a ground cover reference map were available for this area.
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The ground cover map was digitized and then geometrically registered to the

multispectral scanner data.

From the 12 spectral bands three data "sources" were defined. The data

set contained 7 visible bands; three of them were selected as the visible

source (band 1:0.46 - 0.49 #m, band 4:0.52 - 0.57 #m and band 7:0.61 -

0.70 #m). The data set has 3 bands in the near-infrared region (band 8:0.72

- 0.92 #m, band 9:1.00 - 1.40 #m and band 10:1.50 - 1.80 #m) which were

all selected to represent the near-infrared source. One band in the thermal

region (band 12:9.30 - 11.70 #m) was selected as the thermal source. It is

known from a long history of experience with the data that the ground cover

types have significantly different degrees of separability in these three

spectral regions.

Two approaches were applied to determine reliability factors for the

three sources. One used the weighted average separability of pairs of

information classes in each source as a measure of reliability; the other

measured the reliability by the overall classification accuracy in each source.

Since the separabilities were calculated for the information classes as defined

by the reference map, they do not depend on the signatures used for

classification of a data source. Therefore, in our experiments, different

training methods did not affect the values of the reliability factors

determined from the weighted average separability of the information

classes. The separability could thus be calculated before the individual

sources were classified. In this research two types of separability estimates

were used: JM - distance and transformed divergence. The values of these

estimates for each data source are shown in Table 4.1. For the purpose of
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comparison the values in the table are normalized to be in the range from 0

to 1.

As pointed out in Chapter 2 various training methods can be applied in

statistical multisource analysis. In our experiments we used both

unsupervised and supervised training. In the first experiment (unsupervised

training) we used the data classesin each source; in the secondexperiment

(supervised training) data classes were picked by selecting regions with

distinctly different color on an image display. When the statistics for each

source had been determined by applying the selected training procedure,

each source was classified by maximum likelihood classification.

Table 4.1

Normalized Separability of Information Classes

Source

Visible

Near-Infrared

Thermal

JM- Distance

0.7595

0.8291

0.5715

Transformed Divergence

0.7461

0.8166

0.4971

In order to apply equation (3.2), the source-specific probabilities were written

in the following form:
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mi

P(Wj]xi) = [P(Xi)] -1 E P(xildk,Wj)p(dk'Wj)
k=l

(4.1)

Here m i is the number of data classes for source i and p(xi) is computed by:

M mi

P(Xi) = E E P(xildk,Wj)p(dk'wJ) (4.2)
j=lk=l

where M is the number of information classes. For each source, the joint

probabilities P(dk,Wj) were tabulated in a joint occurrence matrix by

comparing single-source data-class classifications to information classes in

the reference map. To reduce considerably the computation and memory

requirements, the class-conditional probabilities were computed

independently of information classes, i.e., we set:

P(xi[dk,Wj) = P(xildk) for all wj

This approximation is valid if the distribution of a data class is the same

regardless of information class. It is unlikely to hold exactly in the case of

unsupervised classification, but the approximation is essential to the

feasibility of carrying out the computations on a microcomputer (a PC/AT -

based system was used). Using the approximation and equations (4.1) and

(4.2), equation (3.2) can be written in the following form:

mi

E P(Xi [dk)p(dk'wJ)

n k=l exp a i (4.3)Fj(X) = [p(wj)]l-n H M m_

i=1 _ _p(xi[dk)p(dk,wj )
jffilkffil

All computer processing was done on an ERDAS image processing system

based on an IBM PC/AT.
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4.2 Experiment 1: Unsupervised Analysis

In this experiment the classifier training for each source was performed

using an unsupervised approach. For this purpose a one-pass clustering

algorithm called STATCL in the ERDAS software was used. This algorithm

works as follows [24]:

A 3 x 3 window is moved over the multispectral image row by row and

column by column. In each box the standard deviation of each band and

the interband covariance matrix are calculated. The standard deviations

are then compared to the user-specified upper and lower bounds on standard

deviation in a cluster. If all of the standard deviations are within these

bounds the covariances in the covariance matrix are compared to a fixed

upper bound on covariance as specified by the user. If every covariance in

the covariance matrix is less than this fixed covariance, the window becomes

a cluster, otherwise not. In experiment 1 the default values in the algorithm

were used, i.e., the lower bound on standard deviation was always set to be

0.1, the upper bound 1.2 and the upper bound on covariance was 12.

After the image has been scanned by the 3 x 3 window and all the

clusters have been made they are merged according to a user-specified bound

on the Mahalanobis distance. In the experiment this bound was always

selected to be 3 (default). The output from the STATCL algorithm is the

mean vector and the covariance matrix for each data class in the image.

When the STATCL algorithm had been run to define data classes for

each source, all sources were classified independently by maximum likelihood

classification. The clustering had identified 9 data classes in the visible

source, 10 in the near-infrared source and 5 in the thermal source. The test
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area contains 9 ground cover classes. The co-occurrence matrices showing

the joint occurrences of the information and data classes for each source

were computed by considering the whole test area. In practice we usually

have just a small training area, which should be representative of the whole

area, from which to calculate the joint occurrence matrix. At this point in

testing the algorithm we want the joint occurrence matrices to be as

accurate as possible and we therefore used the whole area.

In this experiment we combined two sources at a time. The separability

of the information classes in the near-infrared source was the highest;

therefore that source was combined first with the visible source and then

with the thermal source. Since the near-infrared source had the highest

separability according to both JM-distance and transformed divergence, its

reliability factor determined from these separability measures was given the

value 0.9. The reliability factors of the other sources were scaled relative to

this value by using equation (3.17) and the values in Table 4.1. We selected

0.9 as the highest reliability factor (amax) because the prior probabilities can

be considered as a separate source in equation (3.2) with the reliability

factor 1.0 (since the prior probabilities are computed from the reference map

which is representative of the total area classified). The values of the

reliability factors for both separability measures are shown in Table 4.2 and

Table 4.3.

In order to get a baseline result and see how the values of the reliability

factors affect the classification, the classification was also performed for a

range of values of the reliability factor. While one source was given a

constant reliability factor of 0.9 the reliability factor of the other source was
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Table 4.2

Reliability Factors Determined from the Separability Measures
for Classification of the Near-Infrared and Visible Sources

Source

Near-Infrared

Visible

JM - Distance

0.9000

0.8244

Transformed Divergence

0.9000

0.8222

Table 4.3

Reliability Factors Determined from the Separability Measures
for Classification of the Near-Infrared and Thermal Sources

Source

Near-Infrared

Thermal

JM - Distance

0.9000

0.6203

Transformed Divergence

0.9000

0.5478
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successively reduced from 0.9 in steps of 0.1. This was done for both sets of

sources involved in the classification. The results are shown in Tables 4.5

and 4.6.

Table 4.5 shows the results of the classification of the visible and near-

infrared sources. If we look at the individual classification of each data

source we see that the clustering algorithm has isolated corn, soybeans,

non-farm and pasture in both data sources. The near-infrared source does a

much better job of classifying the soybeans but the visible source isolates

additionally another information class which is sudex. The overall

classification accuracy is slightly higher in the near-infrared source (78.7_o)

compared to the visible source (73.1_Vo). These accuracies were used to

calculate a set of reliability factors by applying equation (3.17). The

reliability factors are shown in Table 4.4.

Table 4.4

Reliability Factors Determined from Overall Classification Accuracy for
Classification of the Near-Infrared and Visible Sources in Experiment 1

Source

Near-Infrared

Visible

Classification Accuracy

78.7%

73.1%

Reliability Factor

0.9000

0.8360
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Table 4.5

Results of Experiment 1:

Classification of the Near-Infrared and Visible Sources

and Their Composite with Various Values of "Reliability"

Percent Agreement with Reference for Class

_IIR VS 1 2 3 4 5 6 7 8 9 OA

lear-infrared 84.8 92.6 91.5 0.0 0.0 0.0 0.0 69.1 0.0 78.7

visible 81.4 88.2 73.4 0.0 0.0 0.0 0.0 49.0 86.1 73.1

100 100 89.2 94.1 90.0 0.0 0.0 3.6 0.0 45.8 82.9 82.6

90 90 90.1 94.0 89.8 0.0 0.0 19.0 0.0 48.2 83.7 82.8

90 83.6 (C) 89.9 94.0 89.6 0.0 1.2 19.9 0.3 49.5 83.3 82.8

90 82.4 (J) 89.9 94.0 89.6 0.0 1.2 19.9 0.4 50.0 83.0 82.8

90 82.2 (T) 89.9 93.9 89.6 0.0 1.6 19.9 0.4 50.0 83.0 82.8
90 80 89.9 93.9 89.6 0.0 2.1 20.2 0.4 51.0 82.8 82.7

90 70 89.8 93.9 89.2 0.0 3.8 22.0 1.5 57.9 81.2 82.7

90 60 89.5 93.7 89.0 0.0 4.0 22.0 3.2 63.9 80.7 82.6

90 50 88.6 93.5 88.4 0.0 6.9 22.6 9.8 65.2 78.3 82.4

80 90 90.6 94.0 89.5 0.0 0.0 23.2 0.2 48.4 83.8 82.8

70 90 91.2 93.6 89.4 0.0 0.0 44.3 0.3 48.2 84.6 83.0

60 90 92.1 93.3 88.0 0.0 2.6 47.0 0.3 47.9 84.7 82.4

50 90 92.9 92.7 86.3 16.3 2.3 57.1 1.1 47.9 84.8 82.0

# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR VS indicates the level of "reliability" assigned to the near-infrared (NIR) and the

visible (VS) sources. (C) indicates weighting according to classification accuracy; (J)

according to JM-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm

2 - Corn

3- Soybeans

4 - Hay
5 - Oats

6- Woods

7 - Wheat

8 - Pasture

9- Sudex
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When the sources are combined with full reliability (1.0) assigned to

both of them we get a significant increase in overall classification accuracy

compared to the classification of the individual sources. Assigning the

reliability factors shown in Table 4.2 and Table 4.4 does not increase the

overall accuracy very much. All these computed reliability factors give very

similar results, an overall accuracy of 82.8%. This is not the highest overall

accuracy in Table 4.5, however. The highest accuracy is, somewhat

surprisingly, accomplished by giving the near-infrared source a lower value

of reliability than the visible source (70,90). This result is surprising because

we estimated the near-infrared source to be more reliable than the visible

source.

The increase in overall accuracy using different levels of reliability is so

small that it is hard to draw conclusions from these results. But the main

reason for the small increase in overall accuracy is that we do not get much

increase in accuracy contribution from the small classes. In the area there

are two dominating information classes, corn and soybeans, covering 76.2o/0

of the area. To get a substantial increase in overall accuracy by changing

the levels of reliability we have to get high accuracy for these classes and

also some increase in accuracy for the smaller classes. When we get the

highest accuracy (83.0%) we accomplish this but the difference in accuracy

contribution from the smaller classes other than sudex is very small.

However, we can see that changes in the reliability factors significantly

affect the classification accuracy of the individual information classes. For

example the classification accuracy of pasture increases substantially when

the value of the reliability factor for the visible source is decreased. Similar



43

things happen for woods and hay when the reliability factor for the near-

infrared source is decreased. This leads us to conclude that it is possible to

optimize the classification accuracy of single information classesby adjusting

the reliability factors. One possible way to determine the reliability factors

in this casewould be to base them on the weighted averageseparability of a

single information classversus all other information classesin each source.

Another point which is interesting to note is how well information

classes are discriminated by a source. The "strength of discrimination" of

information classes is a possible reason why we get the peak in overall

accuracy when we discount the near-infrared source. Although classification

accuracy for corn and soybeans is higher in the near-infrared source, the

classification accuracy of these classes decreasesonly slightly when the

near-infrared source is discounted. We can therefore assume that these

classesare very well discriminated by the near-infrared source. We discuss

this further below when we look at the results in Table 4.6 where we have

combined the near-infrared and the thermal sources.

In Table 4.6 we see that the clustering of the thermal source does not

isolate one of the large classes (corn) but does isolate wheat which is not

isolated by the near-infrared source. Since corn is never classified correctly

by the thermal source alone, the overall classification accuracy for the

source is only 49.2%. The reliability factors calculated from the overall

classification accuracy of the sources are shown in Table 4.7.

When the sources are combined with full reliability (1.0) assigned to

both, we get a substantial increase in overall accuracy compared to the

overall accuracy of the classification of the thermal source but no increase
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Table 4.6

Results of Experiment 1:

Classification of the Near-Infrared and Thermal Sources! . , • It

and Their Composite with Various Values of 'Rehabdlty

Percent Agreement with Reference for Class

NIR TH 1 2 3 4 5 6 7 8 9 OA

near-lnfrared 84.8 92.6 91.5 0.0 0.0 0.0 0.0 69.1 0.0 78.7

thermal 58.1 0.0 97.5 0.0 0.0 0.0 77.6 0.0 0.0 49.2

100 100 81.7 93.4 88.7 0.0 0.0 0.0 40.4 47.4 0.0 78.7

90 90 79.9 93.0 88.6 0.0 0.3 0.0 52.6 61.5 0.0 79.0

90 80 79.0 92.8 88.6 0.0 0.3 0.0 55.0 61.8 0.0 79.0

90 70 78.0 92.7 88.5 0.5 0.0 0.0 56.3 63.6 0.2 78.9

90 62.0 (J) 77.8 92.7 88.4 0.7 0.0 0.0 56.6 68.6 0.3 78.9
90 60 77.8 92.7 88.4 0.7 0.0 0.0 56.6 68.6 0.3 78.9

90 56.3 (C) 76.8 92.7 88.4 0.7 0.0 0.0 57.4 69.1 1.8 78.9

90 54.8 (T) 76.8 92.7 88.3 0.7 0.0 0.0 57.9 69.4 1.8 78.9

90 52 76.6 92.7 88.3 0.7 0.0 0.0 59.0 69.9 2.0 78.9

90 50 76.6 92.7 88.2 1.3 0.0 0.0 59.0 70.9 12.4 79.4

90 40 73.9 92.7 69.7 1.8 0.0 0.0 59.0 78.8 55.7 73.6
0.0 79.0

80 90 77.7 92.7 88.6 0.0 0.9 0.0 60.0 61.5
70 90 76.2 92.3 88.5 0.0 3.6 0.0 69.1 61.1 0.2 79.1

60 90 74.1 92.1 88.2 0.0 7.8 0.0 74.2 61.8 0.3 79.0

50 90 70.5 91.5 88.2 0.0 8.0 0.0 79.9 63.6 0.0 78.7

40 90 64.4 90.4 87.6 0.0 11.8 0.0 88.4 67.3 0.0 78.0

# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800
the

H * • • I.

NIR TH indicates the level of rehabdlty assigned to the near-lnfrared (NIR) and

thermal (TH) sources. (C) indicates weighting according to classification accuracy; (J)
according to JM-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm

2 - Corn

3 - Soybeans

4 - Hay
5 - Oats

6 - Woods

7 - Wheat

8 - Pasture

9 - Sudex
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compared to the overall accuracy of the classification of the near-infrared

source. When the reliability factors are assigned we get the overall accuracy

as high as 79.4% This increase in overall accuracy is caused by an increase

in the accuracy of source is discounted while the classification accuracy of

corn and soybeans does not decrease by much. The reliability factors in

Table 4.3 and Table 4.7 all give an overall accuracy of 78.9%. These

reliability factors apparently do not discount the thermal source enough.

Table 4.7

Reliability Factors Determined from Overall Classification Accuracy for
Classification of the Near-Infrared and Thermal Sources in Experiment 1

Source

Near-Infrared

Thermal

Classification Accuracy

78.7%

49.2%

Reliability Factor

0.9000

0.5626

Looking at the results in Table 4.6 there are still other things which are

interesting. For example when we decrease the reliability of the near-

infrared source in which the information classes are much more separable

than in the thermal source, the overall accuracy goes up to the high of

79.1%. The accuracy of the large classes corn and soybeans goes down just

a bit. This is interesting because the clustering of the thermal source does

not isolate corn. Therefore we can conclude that soybeans are so well
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discriminated by the near-infrared source that we can reduce the reliability

factor to as little as 0.4 without affecting the accuracy of the classification

by much. We can generalize this by saying that if inform_.tion classes are

well discriminated by a source, their classification accuracy will be relatively

independent of the value of the reliability factor specified for the source.

The reliability factor can then be specified to maximize the classification

accuracy of other information classes.

It is also interesting to note in Table 4.6 that the classification accuracy

of sudex increases significantly as we decrease the value of the reliability

factor of the thermal source. This is interesting because sudex is not

isolated by the clustering in either source. The experimental results indicate

though that the near-infrared source gives some support to this information

class.

Since we did not get much improvement in the classification accuracy in

this experiment by using our reliability measures, we wanted to do another

experiment differently on the same data set. In this experiment some

information classes were not isolated by the clustering and a high overall

classification accuracy was not accomplished. These results indicated that

the signatures used were not representative and we consequently questioned

the training of the data sources. We therefore chose to train the data

sources differently. Since a supervised approach is likely to overcome the

shortcomings described above, a supervised approach was defined to train

the data sources.



47

4.8 Experiment 2: Supervised Analysis

In this experiment we trained each source using a supervised approach.

For each source, data classes were picked by selecting regions with distinctly

different color on a color monitor. The training samples were classified, a

confusion matrix and the JM - distance were calculated and "non-separable"

training samples were merged as shown in Fig. 4.1. This procedure identified

22 data classes in the visible source, 24 classes in the near-infrared source

but only 5 in the thermal source. A few of the information classes were not

isolated by this training approach because they were not separable from the

other information classes. This was especially the case for the smaller

information classes (woods, oats and hay). Apart from the training the

experiment was conducted in the same manner as Experiment 1. The

reliability factors calculated from classification accuracies are shown in

Tables 4.8 and 4.11. The experimental results are shown in Tables 4.9 and

4.10.

Table 4.8

Reliability Factors Determined from Overall Classification Accuracy for
Classification of the Near-Infrared and Visible Sources in Experiment 2

Source

Near-Infrared

Visible

Classification Accuracy

79.3%

76.7%

Reliability Factor

0.9000

0.8705
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Training samples are selected

from information classes.

If an information class has

regions with different colors,

samples are

selected from each color.

Classify training samples,

calculate confusion matrix _-

and separability measures

No Merge

classes

Figure 4.1 The Supervised Training Procedure
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In Table 4.9 we see the classification results for the combination of the

near-infrared source and the visible source. In the near-infrared source 6

information classes are isolated and the overall classification accuracy for

this source is 79.3%. The classification of most of these classes is more

accurate in the near-infrared source than in the visible source but 2 more

information classes are isolated in the visible source and the overall

classification accuracy for the visible source is 76.7%.

When the sources are combined the overall accuracy goes up to 87.7%,

which is a significant increase. The accuracy in all classes but three goes up

compared to the classification accuracy in the individual sources. We get,

for instance, over 90% classification accuracy for the three largest classes;

soybeans, corn and non-farm. The increase in classification accuracy for

non-farm is 29.9% compared to the classification accuracy of the near-

infrared source and 43.007oo compared to the classification accuracy of the

visible source. We do not get higher accuracy after combination for oats in

the visible source and wheat and pasture in the thermal source. However, in

all those cases the classification accuracy is increased by the combination as

compared to the classification accuracy of the other source.

When reliability factors are assigned we get a further increase in overall

accuracy. Using the reliability factors in Table 4.2 and Table 4.8 we get the

highest overall accuracy which is 88.1% Varying the reliability factors has

for most of the information classes the expected effect that when we

discount the visible source the classification accuracy goes up for the classes

which have higher accuracy in the near-infrared source. In particular we see

that the classification accuracies of pasture and wheat increase compared to
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Table 4.9

Results of Experiment 2:
Classification of the Near-Infrared and Visible Sources

and Their Composite with Various Values of '_teliability"

Percent Agreement with Reference for Class
NIR VS 1 2 3 4 5 6 7 8 9 OA

near-infrared 61.8 86.4 87.2 0.0 0.0 0.0 79.5 97.6 69.4 79.3

visible 48.5 81.8 86.6 6.2 74.5 0.0 48.2 81.7 76.2 76.7

100 100 91.5 91.8 92.5 17.2 38.5 5.4 75.5 93.7 84.3 87.7

90 90 91.5 91.2 91.9 28.4 43.8 19.3 77.5 95.8 84.6 87.8

90 87.1 (C) 91.9 91.0 91.9 28.7 44.0 38.4 78.3 97.6 84.6 88.1

90 82.4 (J) 92.0 91.0 91.6 29.2 43.3 43.2 78.3 99.5 84.7 88.1

90 82.2 (T) 92.1 91.0 91.6 29.2 43.5 43.2 78.8 99.5 84.7 88.1
90 81 92.3 91.0 91.5 29.3 43.0 43.5 79.4 99.7 84.8 88.1

90 80 92.4 91.0 91.5 29.5 42.8 43.8 79.5 99.7 84.8 88.1

90 78 92.7 91.0 91.4 29.8 43.0 43.8 79.7 99.7 84.8 88.1

90 70 92.2 90.3 90.7 31.1 42.5 43.5 80.3 99.7 84.6 87.5

90 60 91.4 88.9 89.5 32.1 41.1 46.7 79.3 99.7 84.5 86.5

90 50 90.4 87.5 88.1 33.4 40.7 47.0 78.1 99.7 84.5 85.3

80 90 90.6 90.5 91.2 36.6 50.4 48.2 77.0 97.1 84.6 87.8
70 90 87.0 89.6 90.2 44.4 55.8 53.6 72.8 96.9 84.2 86.9

60 90 82.9 88.2 88.9 49.3 61.5 56.5 68.0 95.8 83.3 85.5

50 90 79.6 86.7 87.6 54.3 63.3 59.2 63.2 95.0 82.2 84.0

# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR VS indicates the level of "reliability" assigned to the near-infrared (NIR) and the

visible (VS) sources. (C) indicates the according to classification accuracy; (J) according to

JM-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm

2- Corn

3 - Soybeans

4 - Hay
5- Oats

6 - Woods

7 - Wheat

8 - Pasture

9 - Sudex
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the accuracy in classification of either source. This is also true for oats, i.e.,

when we discount the near-infrared source the classification accuracy of oats

goes up.

It is also interesting to note that although woods is isolated by neither

source in single source classification, its classification accuracy is much

better than chance when the sources are combined and the accuracy

increases when either of the two sources is discounted. This is especially true

when the near-infrared source is discounted; as shown in Table 4.9, the

classification accuracy of woods increases to over 55_. Another interesting

observation is that the classification accuracy of hay goes up when we

discount the visible source even though this class is isolated in the visible

source but not in the near-infrared source. This shows that the near-

infrared source gives some support to this class although it is not isolated in

the source. This also demonstrates the strength of discrimination of hay by

the visible source. Furthermore, the classification accuracy of hay increases

still more when the near-infrared source is discounted. These two examples

of changes in classification accuracy for hay and woods suggest the

possibility of defining class-specific reliability factors to optimize

classification of specific ground cover types. Similar effects are seen when we

combine the near-infrared source and the thermal source, which we discuss

below.

In Table 4.10 we have combined the near-infrared source and the

thermal source. The thermal source has lower accuracy in classification for

most of the information classes and two fewer classes are isolated than for

the near-infrared source. The overall classification accuracy (67.7_) is
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Table 4.10

Results of Experiment 2:

Classification of the Near-Infrared and Thermal Sources

and Their Composite with Various Values of '*Reliability"

Percent Agreement with Reference for Class
NIR TH 1 2 3 4 5 6 7 8 9 OA

near-lnfrared 61.6 86.4 87.2 0.0 0.0 0.0 79.5 97.6 69.4 79.3

thermal 76.5 79.3 73.6 0.0 0.0 0.0 71.5 0.0 0.0 87.7

100 100 71.8 90.2 92.7 8.4 34.5 0.0 77.3 95.6 76.1 84.8

90 90 71.6 89.7 92.4 16.7 35.7 0.0 78.2 95.8 77.6 84.9

90 80 72.0 89.7 92.4 17.5 36.0 0.3 78.5 95.8 78.2 84.9

90 76.8 (C) 73.8 89.7 92.3 17.7 36.0 0.4 80.0 95.8 78.3 85.1
90 70 75.5 89.6 92.0 18.0 36.2 0.6 81.4 95.8 78.5 85.2

90 62.0 (J) 76.2 89.6 91.9 18.7 36.2 0.9 79.9 96.1 78.8 85.2
90 60 76.5 89.4 91.7 19.0 36.2 1.2 79.8 96.1 78.8 85.1

90 57 77.9 89.1 91.0 19.3 36.4 1.2 78.7 96.1 79.8 84.8

90 54.8 (T) 78.3 88.9 90.6 19.3 36.6 1.2 78.1 96.1 80.5 84.6
90 50 78.9 88.3 88.8 19.7 37.3 0.9 78.1 96.1 80.8 83.8

90 43 79.9 86.8 85.1 20.2 38.5 0.9 78.1 96.3 81.2 81.8

80 90 71.5 89.5 89.8 18.2 37.4 0.0 74.0 95.8 78.3 83.6

70 90 68.5 89.1 88.4 19.3 38.0 0.0 73.8 95.6 78.6 82.6

60 90 67.5 88.5 86.6 20.0 38.3 0.0 73.6 95.6 80.7 81.7

50 90 64.0 87.4 85.1 20.2 38.3 0.0 74.0 87.7 80.8 80.3

# of pixels 2783 10543 12939 610 577 336 1167 382 1463 30800

NIR TH indicates the level of "reliability" assigned to the near-infrared (NIR) and the

thermal (TH) sources. (C) indicates weighting according to classification accuracy; (J)

according to J-M-distance; (T) according to transformed divergence.

Names of information classes:

1 - Non-farm

2- Corn

3 - Soybeans

4 - Hay
5 - Oats

6 - Woods

7 - Wheat

8 - Pasture

9 - Sudex
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much higher using the supervised approach than in the classification of the

thermal source in experiment 1 (49.2_o) because corn was not isolated by the

clustering there. The reliability factors calculated from the overall

classification accuracies of the near-infrared and thermal sources are shown

in Table 4.11.

Table 4.11

Reliability Factors Determined from Overall Classification Accuracy for
Classification of the Near-Infrared and Thermal Sources in Experiment 2

Source

Near-Infrared

Thermal

Classification Accuracy

79.3%

67.7%

Reliability Factor

0.9000

0.7683

When the sources are combined the overall accuracy goes up

substantially. As in Table 4.9 there is an increase in accuracy for most of

the information classes. When reliability factors are included in the global

membership function the overall accuracy goes up to as much as 85.2%.

Using the reliability factors from Table 4.3 we get this maximum with the

reliability factors calculated from the JM - distance. The reliability factors

calculated from the transformed divergence give only 84.8_ overall

accuracy, still quite close to the maximum. The reliability factors in Table

4.11 give 85.1_o overall accuracy. The trend in classification accuracy in
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Table 4.10 is similar to the trend in Table 4.9, i.e., when we discount the

"more reliable" source the overall accuracy goes down and when we discount

the "less reliable" source to a certain point the overall accuracy goes up.

The most significant increase in accuracy is for hay and oats which are

not isolated by either source but, after the combination and changes in

reliability factors, the accuracy in the classification of these classes increases

to over 20°_ and 38_, respectively.

4.4 General Observations

Combination of data from various data sources using statistical

multisource analysis provides in most of our experiments a significant

increase in overall classification accuracy as compared to single-source

analysis. Combining the near-infrared source and the visible source gives, for

instance, 88.1_ overall classification accuracy in experiment 2 when certain

reliability factors are assigned to the sources. There were two

approximations made in our experiments which could have introduced some

error. First, we ignored dependence between data sources in the global

membership function. The advantages of this approach are that it reduces

the computational complexity of the classification procedure and provides

the opportunity to update the classification based on additional sources

without starting all over again. Secondly, we made the approximation that

the distribution of the data in a data class is the same regardless of

information class. This approximation is unlikely to hold exactly for the

unsupervised case but it, too, reduces the complexity of the computations

and memory requirements.
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The results of the classification in experiment 2 are better than in

experiment 1, consistent with the superiority of the supervised training over

unsupervised training. Although there is not a large increase in overall

accuracy achieved by assigning reliability factors in either experiment, the

different levels of reliability often give a substantial increase in classification

accuracy of individual classes, even for classes which are not isolated in the

classification based on any of the individual sources. In our view, this

justifies in part the use of reliability factors in equation (3.2) for the purpose

of weighting the influence of the various sources.

Using separability analysis to estimate the reliability of a source seems

to be a reasonable choice, especially when the assumption can be made that

the information classes have normal distributions. In experiment 2 we had

some success assigning reliability factors using the separability measures to

achieve the highest overall accuracy. In experiment 1 we did not get the

highest overall accuracy by applying this approach but that may be due to

the STATCL algorithm and the possibility it did not provide representative

statistics. But this also illustrates a shortcoming in this approach: we have

to assume a particular distribution for the information classes in order to be

able to calculate the separability. In these experiments we believe the

Gaussian model was reasonable, but when handling different kinds of data

the Gaussian assumption may be unsuitable for some of the sources.

On the other hand, using classification accuracy to measure the

reliability of a source is a straightforward approach which is

computationally inexpensive and overcomes some of the shortcomings of the

separability approach. The reliability factors calculated from the
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classification accuracy depend on the training of the data sources in contrast

to the separability approach applied in this report. This might be an

advantage of the classification approach, because if a source is badly trained

it is likely to have lower reliability. In our experiments the results using the

reliability factors calculated from the classification accuracy were very

similar to the ones using the separability measures.

The main problem is how to associate reliability factors with the

reliability measures. In this research we have assigned the highest reliability

factor to the "most reliable" source, assumed a linear relationship between

the reliability of the different sources and scaled them relative to the

maximum value. This linearization is almost certainly a simplification of

reality and consequently introduces errors in the reliability factor

calculations in some cases. In the next chapter we will discuss this problem

in conjunction with other ways of estimating the reliability of sources.
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CHAPTER 5

CONCLUSIONS AND

SUGGESTIONS FOR FUTURE RESEARCH

5.1 Discussion

The objective of this research is to investigate methods of statistical

multisource analysis. The proposed method has several advantages as a

general approach in multisource classification, viz., it handles various

sources of data independently, has the potential to treat non-numerical as

well as numerical data and, with certain approximations, provides a way to

update the classification based on new data sources without having to

calculate everything all over again. We have investigated ways to estimate

the reliability of individual sources and to include reliability in the global

membership function of the statistical multisource analysis. The

experimental results show that assigning reliability factors to the sources can

either improve or degrade the overall classification accuracy. In our

experiments, assigning reliability factors did not increase the overall

accuracy very much. It was clear, however, that different levels of reliability

can affect individual classes significantly, and we demonstrated the

possibility of assigning reliability factors to optimize accuracy of individual
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classes. This was especially interesting when, for instance, an information

class was isolated by neither individual source. In that case it was possible

to achieve a significant accuracy for this class by varying the reliability

factors.

The problem of determining optimal reliability factors can be split into

two parts. First we have to use somemeasure to assessthe reliability of a

source, and then we have to associate this measure with the reliability

factors. In this report, two methods were proposed to determine reliability

factors. One used the weighted average separability of the information

classesfor a source as its measure of reliability; the other used the overall

classification accuracy for a source. Two separability measures were

considered to explore the separability approach, the transformed divergence

and the JM - distance. The separability measures and the classification

accuracies were associated with the reliability factors by assigning the

highest reliability factor to the source with the "highest reliability" and then

scaling the measured reliability of the other sourcesaccording to this value

by using equation (3.17). Applying the calculated reliability factors in the

statistical multisource analysis gave the highest overall accuracy in

experiment 2 (the reliability factors calculated from the JM - distance) but

the results were not as good in experiment 1. The change in overall

accuracy using the reliability factors was so small that it was hard to draw

firm conclusions from the results. It is clear, however, that the linearity

relation in equation (3.17) has some limitations. We know, for instance, that

the separability functions are not linear and we have some difficulty in

justifying this linearity relation for the classification accuracy.
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Using the separability estimates to measure reliability has the

disadvantage that we have to assumesome probability distribution for the

information classes. Although normal distributions can be assumed for

spectral classesof corn and soybeans,we would not be able to assumesuch

a probability distribution for elevation data. It may not in all cases be

possible to calculate the separability measures even though they can be

expressedin a nice closedform when normal distribution is assumed. Thus

separability measureswill not besuitable to estimate reliability factors in all

cases.

Using the classification accuracy to measure reliability does not require

any knowledge of the probability distribution of a source. This approach is

computationally relatively inexpensive because each data source needs to be

classified individually anyway in the statistical multisource analysis. We

discuss below another method which could be investigated for reliability

factor estimation. This method also does not assume anything about the

probability distribution of information or data classes.

5.2 Directions for Further Research

One way to characterize reliability of a source would be to examine the

correspondence between the information classes and the data classes, i.e.,

the conditional probabilities that we observe a specific information class

given a data class. All these conditional probabilities can be computed by

comparing the reference map to a classified map from a data source.

Assuming we have r information classes {xl,...,Xr) and s data classes

{Yl,--.,Ys} we can write all the conditional probabilities as the s x r
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correspondencematrix R, where R is:

P(Xl[Yl) P(X2[Yl)

P(Xl _Y2) P(x2_Y2)

R (5.1)

We can now define reliability in the following way: If a source is optimal in

reliability there would be a specific information class corresponding to each

data class. Therefore ideally one conditional probability in each row of R

would be 1 and all the others would be zero. If a source were very

unreliable, there would be no correspondence between the data classes and

the information classes; in the worst case all the numbers in the matrix

would be the same.

Now we would like to associate a number with the matrix R to

characterize the reliability. Using information theoretic measures [25] we

could think of the information classes as a transmitted signal and the data

classes as a received signal which must be used to estimate the transmitted

signal. Using this approach we can state that there is an uncertainty of

log[1/p(xi_,j) ] about the information class x i when we observe data class yj in

a data source.

We can calculate the average loss of information when we observe the

data class yj, which is given by [26,27]:

1 (5.2)H(x_yj) = _p(xi[yj)log
i p(Xi lYJ)

Now we want to average the information loss over all observed data classes
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Yj.

H(xbr):

This is called the equivocation of x with respect to y and is denoted by

H(x[y) = Ep(yj)H(x_yj)
J

= E_,p(yj)p(xi [yj){log 1
i j P(Xi [Yj) }

= ,_,_p(xi,Yj) {log 1
i j P(Xi brj) }

(5.3)

H(x[y) represents the average uncertainty about an information class over

all the data classes. Evidently, H(x[y) is the average loss of information per

data class and therefore seems to be a reasonable term to associate with the

reliability of a source. Since H(x[y) measures uncertainty, the higher value

it has the more unreliable a source is. If we estimate this quantity for all

the data sources, we could give the source with the lowest H(x_y) the highest

reliability factor and then determine the reliability factors for the other

sources accordingly.

To calculate H(xly) is relatively inexpensive because all the probabilities

needed can be computed easily from the reference map and the classified

maps from the individual sources. This reliability measure also has the

advantage that we do not need to know anything about the probability

distributions of the information classes in any source. The only problem at

this point is how to associate reliability factors with the uncertainty, a

problem common to all the reliability measures discussed so far.

The global membership function which we are trying to optimize is a

complex non-linear function. To include reliability factors in that function
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is by no means easy, but several different approacheshave been discussed to

quantify the reliability. To associate the reliability factors with these

measures is a complicated problem. We would prefer a linear relationship

between the reliability measuresand the reliability factors or at least have

the relationship as a closedexpression. In this researchwe used separability

measures and classification accuracy to estimate the reliability and

approximated the relation between thesemeasuresand the reliability factors

by a linear function. It is hard to justify this approximation. Consequently

this problem should be investigated further.
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